Качественные показатели воды, поступающей в водооборотные системы охлаждения, другие водооборотные системы находятся в очень широком диапазоне. Поэтому, наиболее серьязными проблемами, возникающими при эксплуатации систем водооборотных систем являются:

Коррозия оборудования и образование отложений
Причиной коррозии является растворенный в воде кислород. Коррозия особенно характерна для систем охлаждения с градирнями, вода в которых имеет непосредственный контакт с воздухом. Отложения могут возникать из-за наличия в воде остаточной жесткости и продуктов коррозии.  
Решения. Для устранения коррозии и отложений минеральной природы необходима водоподготовка с использованием ингибиторов коррозии и отложений Drew или Enviroplus

- Биологические/Гумусовые отложения
Как правило, в системах охлаждения создаются оптимальные условия (температура, влажность) для размножения различного рода микроорганизмов, водорослей, грибков и тд. Все это - биологические отложения, способствующие коррозии и снижающие общий КПД системы.
Решение. Для устранения биологических отложений необходимо дозировать в систему биоцид широкого спектра действия Biosperce 250. Для интенсификации удаления уже образовавшихся биологических отложений, биоцид часто применяют в комбинации с биодисперсантом Enviroplus 8100.

- Пенообразование
Пенообразование в системах охлаждения возможно из-за присутствия в воде поверхностно-активных веществ, к которым относятся и гуминовые кислоты и этаноламины. 
Решение. Для устранения пенообразования рекомендуем применять специальный реагент, отличающийся низкой дозировкой Drewplus 6000. Для систем с этаноламинами необходим специально предназначенный реагент Amerel 1500

Охлаждение воды в промышленности

  Системы промышленного водоснабжения предназначены обеспечивать подачу воды на производство в требуемых количествах и соответствующего качества. Они состоят из комплекса взаимосвязанных сооружений — водозаборных устройств, насосных станций, водоводов, установок для очистки и улучшения качества воды, регулирующих и запасных емкостей, охладителей воды и разводящей сети трубопроводов. В зависимости от назначения и местных условий некоторые из перечисленных сооружений в системе могут отсутствовать.

По данным государственного учета использования воды промышленностью Российской Федерации расходуется в год примерно 40 км3 свежей воды, что составляет 50% общего количества, забираемого для нужд народного хозяйства из источников водоснабжения. Это равняется примерно 20% потребности промышленных предприятий в воде. Недостающее количество (160 км3) обеспечивается за счет повторного использования воды после охлаждения и (или) очистки. Такая вода называется оборотной или циркуляционной.

В зависимости от вида технологического процесса оборотная вода может быть транспортирующей или поглощающей средой (использование воды в таких качествах в данной работе не рассматривается), либо теплоносителем, циркулирующим в охлаждающей системе оборотного водоснабжения. Это система, в которой вода используется в качестве хладогента для охлаждения оборудования или для конденсации и охлаждения газообразных и жидких продуктов в теплообменных аппаратах, где нагревается, а в некоторых случаях и загрязняется этими продуктами в основном за счет неплотностей оборудования. После охлаждения преимущественно на градирнях и очистки (при необходимости) основная масса воды возвращается в систему; часть оборотной воды (обычно не более 5%) теряется на испарение, капельный унос, утечки и сброс в виде продувки системы.

Для охлаждения различного рода технологического оборудования в России используется примерно 105–130 км3 оборотной воды, что составляет в среднем по всем отраслям промышленности около 65% общего расхода воды этой категории.

Требования, предъявляемые к температуре оборотной воды различными промышленными предприятиями, диктуются технологическим процессом и эксплуатационными свойствами оборудования. При выборе типа градирен для обеспечения этой температуры следует учитывать возможность загрязнения воды продуктами производства в водооборотном цикле.

Предприятия теплоэнергетической отрасли потребляют две трети свежей воды, забираемой на промышленные нужды из источников водоснабжения, при наибольшем расходовании ее для охлаждения технологического оборудования (96%). Однако коэффициент водооборота в отрасли ниже среднего по промышленности и составляет примерно 60% из-за сохранившихся с предыдущих лет на многих энергетических предприятиях прямоточных систем водоснабжения. Так, из 144 ТЭС с установленной мощностью 215 ГВт на прямоточных системах водоснабжения работают 45 и на оборотных 99. При этом для охлаждения оборотной воды используются водохранилища (54%), башенные градирни (14%), «сухие» (радиаторные) градирни (0,8%) и брызгальные бассейны (0,2%).

Вода в промышленности и энергетике используется для конденсации и охлаждения газообразных и жидких продуктов химических и нефтехимических производств, для конденсации отработавшего пара после расширения его в паровых двигателях, отвода теплоты от маслоохладителей и оборудования в целях предохранения его от быстрого разрушения под влиянием высоких температур (например, цилиндров компрессоров, кладки производственных печей) и т. п.

На многих промышленных предприятиях эксплуатируются компрессорные установки. Для того, чтобы температура сжимаемого воздуха, выходящего из компрессора, не превышала допустимого для нормальной и безопасной работы предела 140-160°С, используется его охлаждение. Чаще всего применяется водяное охлаждение рубашек компрессоров, при котором охлаждающая вода, прошедшая поверхностные холодильники компрессоров, после охлаждения на градирнях вновь используется.

Расход оборотной воды при температурном перепаде 10-25°С рассчитывается таким образом, чтобы ее температура после поверхностных холодильников не превышала 45°С из-за предупреждения выпадения солей временной жесткости и образования накипи на охлаждаемой поверхности.

Потребление свежей воды в промышленности в значительной мере может быть уменьшено за счет перехода производств на безотходные, безводные или маловодные технологии. Однако многие производственные процессы не всегда или не в полной мере позволяют использовать такие технологии. Тогда на первый план в реализации задачи экономии воды в промышленности вступают охлаждающие системы оборотного водоснабжения с градирнями различных типов и конструкций.

Биологические отложения

В теплообменных аппаратах открытого типа и охладителях в формировании биоценоза принимают участие бактерии, зеленые и сине-зеленые водоросли, простейшие одноклеточные организмы, черви, коловратки и грибы. Последние вместе с илообразующими бактериями разрушают деревянные конструкции градирен.

Серьезные помехи при эксплуатации открытых систем оборотного водоснабжения создают водоросли. Они оказывают значительное влияние на химический состав оборотной воды, так как в процессе фотосинтеза способны поглощать растворенную в воде углекислоту и выделять кислород. В связи с этим в охлаждающих системах в течение суток наблюдаются циклические колебания рН, стабильности и коррозионной активности оборотной воды. Кроме того, водоросли могут являться питательной средой для других представителей биоценоза, стимулируя таким образом их дальнейшее развитие и рост. При обрастании водорослями оросителей и водоуловителей охлаждающая способность, градирен снижается более чем на 15 %. 

Таким образом, развивающиеся на теплообменных поверхностях аппаратов, в коммуникациях и охладителях биологические обрастания снижают эффективность работы оборотных систем технического водоснабжения, вызывают биологическую коррозию металлов, оказыва­ют разрушающее воздействие на деревянные и железобетонные конструкции, сокращая срок их эксплуатации. Поэтому величина скорости роста биологических обрастаний теплообменных аппаратов так же, как и других сооружений оборотных систем, должна быть ограничена допустимой величиной. Для удовлетворения этих требований необходимо лимитировать содержание органических веществ и биогенных соединений, как в оборотной, так и в подпитывающей воде.

Коррозия в системах охлаждения

Охлаждающая вода не должна вызывать коррозию конструкционных материалов трубопроводов, теплообменников и отдельных сооружений, элементов градирен, выполненных из углеродистых сталей других материалов.

По внешним признакам различают общую и местную формы коррозионных повреждений. Общая коррозия носит равномерный характер и распространяется по всей поверхности металла. Местная коррозия вызывает разрушение лишь на отдельных участках металла и может быть язвенной (питтинговой), точечной и в виде пятен.

Одной из причин коррозии металлов является их термодинамическая неустойчивость в различных средах, в том числе и водных. В процессе коррозии металлы переходят в оксиды, которые термодинамически более устойчивы по сравнению с чистыми металлами. Коррозионные процессы не могут быть полностью предотвращены, поэтому для обеспечения надежной работы оборотных систем необходимо, чтобы она протекала равномерно с невысокой интенсивностью. Такие условия можно создать, совместно решая задачи рационального аппаратурного оформления охлаждающих систем и выбора соответствующих конструкционных материалов.

В процессе эксплуатации охлаждающих систем разрушение металла происходит в основном под действием электрохимической коррозии, что приводит к переходу значительных количеств продуктов коррозии в циркуляционную воду. На интенсивность коррозии существенное влияние оказывают величина рН оборотной воды и содержание в ней растворенного кислорода. В щелочной среде при значениях рН > 8 коррозия углеродистой стали уменьшается вследствие образования на поверхности металла плотной нерастворимой пленки гидроокиси. При пониженных значениях рН в присутствии свободной агрессивной углекислоты происходит растворение защитных карбонатных и окисных пленок. Экспериментально установлено, что скорость коррозии малоуглеродистой стали, являющейся основным конструкционным материалом теплообменного оборудования, усиливается с ростом концентрации сульфатов и хлоридов в оборотной воде. При увеличении содержания сульфатов с 50 до 2500 мг/л скорость коррозии стали увеличивается в два раза. Повышение концентрации хлоридов в присутствии небольших количеств сероводорода, аммиака, нитритов приводит к разрушению латунных конденсаторных трубок в результате их обесцинкования.

С увеличением скорости движения воды интенсивность коррозии возрастает, однако в дальнейшем более равномерное распределение кислорода по поверхности металла способствует его пассивации. При более высоких скоростях потока и наличии в воде взвешенных веществ и абразивных примесей происходит механическое разрушение защитных пленок.

Повышение концентрации растворимых солей в оборотной воде приводит к увеличению электропроводности воды и активизации коррозионных процессов; причем в мягкой воде, содержащей растворенный кислород, коррозия конструкционных материалов значительно выше, чем в жесткой воде аналогичной минерализации, что вы­звано меньшей буферной емкостью мягких вод. В отсутствии ингибиторов предельное солесодержание оборотной воды не рекомендуют допускать выше 2 кг/м3, хотя иногда минерализация оборотной воды превышает эту величину и достигает 3 кг/м3.

Минеральные отложения

Водный режим оборотных систем существенно отличается от режима прямоточных систем. Многократный нагрев оборотной воды и ее последующее охлаждение в градирнях и брызгальных бассейнах приводит к потерям равновесной углекислоты и отложению на поверхно­сти теплообменников и холодильников главным образом кальциевых карбонатных отложений.

Растворимость карбоната магния значительно боль­ше, чем карбоната кальция, и поэтому MgCO3 входит в состав накипи в незначительном количестве в результате соосаждения с СаСО3. Однако при обработке доба­вочной воды известью с целью ее умягчения при значениях рН > 10 в результате гидролиза образуется малорастворимое соединение — гидроокись магния.

Природные воды, используемые в схемах технического водоснабжения, в которых не происходит выпадения солей карбонатной жесткости при температуре 40-60°С принято называть термостабильными. Для оценки термостабильности оборотной воды применяют шестибальную шкалу.

Практически карбонатная жесткость термостабильных вод не превосходит 2—3 мгЧэкв/л для оборотного во­доснабжения и 4 мгЧэкв/л — для прямоточного.

Ограниченно термостабильные — природные воды, вызывающие карбонатные отложения только по мере на­копления солей кальция в результате упаривания, имеют карбонатную жесткость не более 4 мгЧэкв/л.

Нетермостабильные — воды с карбонатной жесткостью свыше 4 мгЧэкв/л, у которых при относительно небольшом нагревании сразу же наблюдается выпадение СаСО3.

При работе оборотных систем с ограниченными добавками подпиточной воды, а, следовательно, при больших коэффициентах концентрирования солей содержание сульфата кальция достигает предела растворимости в циркуляционной воде, и он в зависимости от температуры воды и наличия в ней определенных примесей может выпадать из раствора в виде дигидрата CaSO4Ч2H2O и ангидрита CaSO4.

Скорость отложения карбоната кальция и других солей не должна превышать соответствующих пределов, поэтому требуется ограничить карбонатную жесткость и содержание сульфатов в виде расходуемой на подпит­ку охлаждающих оборотных систем. Кроме того, в оборотной и добавочной воде лимитируется концентрация взвешенных веществ, так как взвешенные вещества могут формировать в теплообменниках слой отложений, снижая, таким образом, коэффициент теплопередачи. При скорости движения жидкости 1 м/с и концентрациях грубодиспергированных примесей в оборотной воде 150мг/л и 1000 мг/л коэффициент теплопередачи снижается со­ответственно на 20 и 35 %. В свою очередь, увеличение скорости движения воды в трубках теплообменных аппаратов приводит к уменьшению интенсивности образования механических отложений. По некоторым данным, минимальная самоочищающая скорость движения жид­кости, обеспечивающая вынос и транспортирование механических примесей (песка, накипи и других взвесей) крупностью 0,1-4мм из охлаждаемых элементов, составляет 0,01-0,5м/с. При наличии в оборотной воде окалины скорость циркуляционного потока должна быть не менее 0,8-1 м/с.

Источником загрязнений оборотной воды взвешенными веществами являются неосветленные воды поверхностных водоемов, вторичные продукты деструкции коррозионных и карбонатных отложений, биообрастаний, а также пыль минерального и органического происхождения, проникающая в охладители из атмосферного воздуха. Концентрация пыли в воздухе зависит от регионального фактора, степени загрязненности воздуха выбросами промышленных предприятий, почвенно-климатических условий, скорости ветра и т д.

Взвешенные вещества, например, такие, как песок, осаждаются в пазухах холодильников, забивают трубную систему теплообменников, отлагаются на отдельных участках коммуникаций, а мелкодисперсные включения, входящие в состав карбонатных и сульфатных отложений, вызывают повышение их прочностных характеристик.

Итак, допустимая концентрация взвешенных веществ в циркуляционной воде зависит от гидравлической крупности частиц и от скорости движения воды в теплообменных аппаратах. Исходя из требований по содержанию взвешенных веществ, предъявляемых к качеству оборотной воды, можно определить их максимально допустимую концентрацию в подпиточной воде и таким образом установить оптимальное количество механических примесей, подлежащих выводу из системы.